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Abstract. The Dalgarno–Lewis summation technique as used in the Rayleigh–Schrödinger
perturbation theory is examined. It is shown that this technique forms an independent
perturbation theory and can be used to deal with both bound- and continuum-state problems
with some added advantage over other such approaches.

Many quantum mechanical problems are characterized by Hamiltonians(H) for which
it is difficult to solve the corresponding eigenvalue problem exactly. Fortunately, there
exist physical situations where the unsolvable Hamiltonian differs only slightly from the
Hamiltonian(H0) for a problem that can be solved rigorously. The small differenceλH1

betweenH andH0 is referred to as a perturbation and the so-called perturbation theory
provides useful techniques for constructing the eigenspectrum and/or the eigenfunction of
the full HamiltonianH by using the knowledge of corresponding quantities forH0 and
exploiting the smallness ofλH1.

The Rayleigh–Schrödinger (RS) expansion in the coupling constantλ represents the
standard approach to dealing with bound-state problems of non-relativistic quantum
mechanics. One typical difficulty associated with this method lies in the infinite sums
that arise in all but first order, there being one in second order, two in third order and
so on. In particular, higher order corrections to the energy eigenvalues involve summation
over all possible eigenfunctions, which often cannot be performed explicitly even for simple
situations. As opposed to this, there exists another form of the perturbation theory in which
the energy corrections(1E) to any order are recast in an alternative simpler form such
that only knowledge of the unperturbed initial state is sufficient to compute values for1E.
This is the so-called logarithmic perturbation theory (LPT) [1] constructed for the Riccati
form of the radial Schr̈odinger equation. Being free from summation over all unperturbed
states, theLPT appears to be considerably easier to use. However, Dalgarno and Lewis [2]
introduced a technique (DLT) to get around the summation problem of Rayleigh–Schrödinger
perturbation theory (RSPT) raising the latter to the status of theLPT.

Traditionally, perturbation theory is developed with special reference to discrete
eigenvalues. The assumption of a discrete spectrum is, in fact, unnecessary. The energy-
level shift in the continuum part of the spectrun is not an observable. Thus perturbation
theory for the continuous eigenvalue problem is developed for the eigenfunctions only and
the well known Lippmann–Schwinger equation [3] represents the continuum version of the
RS problem. Recently Auet al [4] have sought an analytic continuation of the bound-
stateLPT to calculate scattering phase shifts. This is a hierarchical approach in which the
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phase shift is expressed, order by order, as a quadrature involving known solutions of the
unperturbed problem. A novel feature of the scheme is that at every stage of iteration, the
phase shift is forced to be real such that the formalism is manifestly unitary.

From the above, one finds that the summation technique ofDL is a mere supplement to
the RS perturbation theory. One of our objectives in this work is to demonstrate that the
physical implication of theDLT is more deep rooted than this. In fact, we find that theDLT

forms an independent perturbation scheme by itself, with certain distinct advantages over
RSPT and LPT. We also derive the corresponding continuum-state perturbation theory and
examine its usefulness, particularly considering the background of the work by Auet al [4].

Consider the Schrödinger equation

Hψ(x) = Eψ(x) (1)

with

H = H0 + λH1. (2)

As already noted,H0 forms a simpler Hamiltonian, of which we know the spectrum, and
λH1 is a small perturbation toH0. We are interested in generating the eigenvalues and
eigenstates ofH by using time-independent perturbation theory. In traditionalRSPT the
wavefunction and the energy eigenvalue of (1) are expanded as

ψ(x) = ψ(0)(x)+ λψ(1)(x)+ λ2ψ(2)(x)+ · · · (3)

and

E = E(0) + λE(1) + λ2E(2) + · · · (4)

whereψ(0)(x) andE(0) stand for the eigenstates and eigenvalues ofH0 while ψ(i)(x) and
E(i) are theith-order corrections overψ(0)(x) andE(0), respectively. Equations (1)–(4)
provide a basis to compute the corrections,ψ(i)(x) andE(i).

In theLPT, the expansion of the energy eigenvalue remains the same as in (4). However,
the wavefunction is chosen as

ψ(x) = eS(x) (5)

with the perturbation expansion

S ′(x) = W(0)(x)+ λW(1)(x)+ λ2W(2)(x)+ · · · . (6)

The transformation (5) converts (1) to a Riccati equation forS ′(x) and it is clear from (6)
that the perturbation expansion is sought for the logarithmic derivative of the wavefunction.
In this approach the Riccati equation in conjunction with (6) yields the results for corrections
to ψ(x) andE.

In equation (6) the quantityS ′(x) represents the logarithmic derivative of the
wavefunctionψ(x). Interestingly, the vocabulary of supersymmetric quantum mechanics
[5] can be used to give a simple physical interpretation for each term in the expansion of
S ′(x). For example, if we restrict ourselves to the perturbation correction for the ground
state ofH0, the first term of the expansion in (6), namelyW(0)(x), will refer to the so-
called ‘superpotential’ that plays a role in the supersymmetric realization of the Schrödinger
factorization method [6]. Admittedly, the quantitiesW(i)(x) stand for the correction to
W(0)(x) due to the perturbing potential. On a very general ground one knows that the
wavefunctionψ(x) is a complex quantity. ThusS(x) in (5) will be complex. It is tempting
to associate ImS(x) with the classical action often used to speculate on the form of the
wavefunction for which the Hamilton–Jaccobi equation represents a short wavelength limit
[7]. With this physical realization forS(x) and the expansion ofS ′(x), we look for a
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perturbation method based on the expansion ofS(x) in a series ofλ with coefficients in the
sequence of the function{S(n)(x)}. Thus we write

S(x) = S(0)(x)+ λS(1)(x)+ λ2S(2)(x)+ · · · . (7)

Understandably, the coefficientS(0)(x) in (7) determines the dominant behaviour ofψ(x).
As with RSPT and LPT, the expansion of energyE is given in (4). The derivation of
a mathematical procedure to obtainS(i)(x) can be facilitated by writing the Schrödinger
equation (1) in the form

− h̄2

2m

d2

dx2
ψ(x)+ [V0(x)+ λV1(x)]ψ(x) = Eψ(x) (8)

where we have used

H0(x) = − h̄2

2m

d2

dx2
+ V0(x)

andH1(x) = V1(x). Obviously, the potentialV0(x) is soluble andV1(x) is the perturbing
potential.

Considering thenth bound state of (8), we write (5) in the form

ψn(x) = eSn(x). (9)

From (8) and (9) we have

S ′′
n(x)+ S ′2

n (x) = 2m

h̄2 [V0(x)+ λV1(x)− En]. (10)

Using (4) and (7) in (10) and equating the coefficients of equal power ofλ on both sides,
we obtain the series of equations

S(0)′′n (x)+ S(0)′2n (x) = 2m

h̄2 [V0(x)− E(0n ] (11)

S(1)′′n (x)+ 2S(0)′n (x)S(1)′n (x) = 2m

h̄2 [V1(x)− E(1)n ] (12)

S(2)′′n (x)+ 2S(0)′n (x)S(2)′n (x) = −2m

h̄2 E
(2)
n − S(1)′2n (x) etc. (13)

Equation (11) for the unperturbed system is a nonlinear differential equation while the
others, namely (12) and so on, form a set of linear inhomogeneous differential equations.
Fortunately, the solution of (11) is known. For example,

S(0)n (x) = lnψ(0)
n (x). (14)

Given (14), the linear equations can be solved easily.
In order to make contact between (11)–(13) etc and the work ofDL, we expressψn(x)

as

ψn(x) = eS
(0)
n (x)[1 + λS(1)n (x)+ λ2{S(2)n (x)+ 1

2S
(1)2
n } + · · ·]. (15)

Clearly, the first-order correction to the wavefunction in (3) is given by

ψ(1)
n (x) = ψ(0)

n (x)S(1)n (x) (16)

which, in the usualRSPT, involves a summation over the discrete set together with an
integration over the continuous set of eigenfunctions. In the technique ofDL, ψ(1)

n (x) is
obtained as the solution of an inhomogeneous differential equation. It is of interest to note
that (12) and (16) can be combined to get this equation and we have

(H0 − E(0)n )ψ
(1)
n (x) = (E(1)n − V1(x))ψ

(0)
n (x). (17)
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Equation (17) has been written for the first-order correction to the wavefunction. The higher
order correction terms can also be identified from (15) so as to write equations such as (16)
and combine them with the appropriate equations forS(i)n (x). This will lead to DL-type
equations forψ(i)

n (x). Thus we see that the ingredients of theDL summation technique are
embedded in our perturbation theoretic equations. In other words, one would like to assert
that theDLT constitutes an independent perturbation scheme.

As with RSPTandLPT, we now proceed to derive a continuum version of the perturbation
theory described above. To that end, we introduce the continuum analogue of (11)–(13) etc
as

S(0)′′(k, x)+ S(0)′2(k, x) = 2m

h̄2 V0(x)− k2 (18)

S(1)′′(k, x)+ 2S(0)′(k, x)S(1)′(k, x) = 2m

h̄2 V1(x) (19)

S(2)′′(k, x)+ 2S(0)′(k, x)S(2)′(k, x) = −S(1)′2(k, x) etc (20)

wherek2 = 2mE/h̄2. As in the bound case we have

S(0)(k, x) = lnψ(0)(k, x). (21)

In the following we propose to work with the Jost boundary condition such that [9]

ψ(k, x) = h(k, x)e−ikδ(k,x) (22)

with δ ∼ −x andh ∼ 1 asx → ∞. For the wavefunction in (21) the quantitykδ(k, 0)
stands for the scattering phase shift.

Equation (19) can be solved to get

S(1)(k) = −2m

h̄2

∫ ∞

0

dx

ψ(0)2(k, x)

∫ ∞

x

V1(x
′)ψ(0)2(k, x ′) dx ′. (23)

In writing (21) we have usedS(1)′(k,∞) = S(1)(k,∞) = 0 andS(1)(k, 0) = S(1)(k) by
assuming that the perturbing potential is of finite range. The results in (22) and (23) can
now be combined to write the first-order correction to the scattering phase shiftη(1)(k)

(= kδ(1)(k, 0)) as

η(1)(k) ≡ Im S(1)(k) = −2m

h̄2 Im

[ ∫ ∞

0

dx

ψ(0)2(k, x)

∫ ∞

x

V1(x
′)ψ(0)2(k, x ′) dx ′

]
. (24)

Similarly, beginning from the differential equation (20) one can get the second-order
correction to the phase shift in the form

η(2)(k) ≡ Im S(2)(k) = − Im

[ ∫ ∞

0

dx

ψ(0)2(k, x)

∫ ∞

x

S(1)′
2

(k, x ′)ψ(0)2(k, x ′) dx ′
]
. (25)

The general result forη(i)(k) can also be obtained in a similar manner. The results we have
presented for the scattering phase shifts are in agreement with those quoted by Auet al [4].
For the bound-state case,DLT andLPT have been shown to be equivalent [10] and we have
found a similar expected result for the scattering phase shift. As an added advantage over
the continuum version ofLPT, we demonstrate that our basic equations in (18), (19) etc
provide a natural basis to calculate scattering phase shifts without performing the multiple
integrals involved in the expressions forη(i)s. We takeV0(x) = 0 andV1(x) = −V0e−x .
For this case (18) gives

S(0)(k, x) = ikx (26)
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which, when substituted in (19), leads to the first-order correction to the scattering phase
shift as

η(1)(k) = 2mV0

h̄2

2k

1 + 4k2
. (27)

Similarly, one can get

η(2)(k) = −
(

2mV0

h̄2

)2
k(5 − 4k2)

4(1 + 4k2)2(1 + k2)
. (28)

Flügge [11] has quoted the results in (27) and (28) calculated by the use of the Born
approximation.

We conclude by noting that the technique of Dalgarno and Lewis has always been
regarded as a supplement to theRSPT. This is perhaps the reason why theDLT has been less
widely used in the past than it has deserved to be. However, with our demonstration that
the Dalgarno–Lewis method is an independent perturbation technique to be treated on an
equal footing withRSPTandLPT, one would like to emphasize further physical applications
of the method developed in this work.

Acknowledgment

This work is supported in part by the Department of Science and Technology, Government
of India.

References

[1] Zel’dovich Ia B 1957Sov. Phys.–JETP4 942
Polikanov V S 1967Sov. Phys.–JETP25 882
Imbo T and Sukhatme U 1984Am. J. Phys.52 140

[2] Dalgarno A and Lewis J T 1955Proc. R. Soc.A 233 70
[3] Lippmann B A and Schwinger J 1950Phys. Rev.79 469

Bohm A 1993Quantum Mechanics Foundations and Applications(New York: Springer)
[4] Au C K, Chow C K, Chu C S, Leung P T and Young K 1992Phys. Lett.164A 23
[5] Witten E 1981Nucl. Phys.B 185 513
[6] Infled L and Hull T E 1951Rev. Mod. Phys.23 21

Sukumar C V 1988J. Phys. A: Math. Gen.21 L455
[7] Goldstein H 1985Classical Mechanics(New Delhi: Addison-Wesley/Norasa)
[8] Schiff L I 1968 Quantum Mechanics(New York: McGraw-Hill)
[9] Newton R G 1982Scattering Theory of Waves and Particles(New York: Springer) p 349

[10] Mavromatis H A 1991Am. J. Phys.59 738
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